kagis
It does sound like there are people who have been working on synthesizing spider silk for some time. So maybe we’ll get there in our lifetimes.
https://old.reddit.com/r/askscience/comments/qiy6x/what_is_keeping_us_from_making_synthetic_spider/
What is keeping us from making synthetic spider silk?
Hey, I can tackle this one because I work in a lab where we ARE making synthetic spider silk.
First off, the collection of natural silk or the farming of spiders is difficult on a large scale. This is due to spiders being cannibalistic and territorial. So what we’ve done is create transgenic organisms that create the spider silk proteins for us. These organisms include goats, silkworms, bacteria and alfalfa.
Problems still exist overall. For example, for every organism, except silkworms, we must spin the protein fibers ourselves. This is the current bottleneck in the production line. After the long process of protein purification, the proteins are dissolved in an organic solvent, and pushed through a long thin needle into an alcohol coagulation bath. The fibers are then treated by different methods to try to increase the strength further. Currently, we can take 1 gallon of goats milk and purify between 1 and 10 grams of protein. From 1 gram of protein we an spin hundreds of meters of silk. The silk is not as strong as the native silk, but stronger than Kevlar and silkworm silk. We are currently working on optimizing this procedure, as well as up-scaling it.
The other promising organism is the transgenic silkworms. The benefit of the silkworms is they spin the fibers for us. The most recent data show that a fiber containing 5% spider silk proteins increase the strength of the silkworm silk by 50%. If we can increase the amount of protein in the silkworms, it may be the most promising way to produce large amounts of silk, due to the infrastructure for silk manufacturing already existing for silkworm cocoons.
Currently, I am working on a couple of projects. One is mixing different ratios of silkworm silk and spider silk (created from bacteria), and finding the changes in mechanical strengths. It is unlikely we can go much higher than 20% spider silk proteins with out competently knocking out the silkworm genes altogether (which may be a future project). Another project I am working on is trying to create a human ACL from transgenic silkworm silk/spider silk fibers. We will be cabling and braiding the fibers in different way to find the best method of creating ligaments.
So, in closing, we are making synthetic silks; however, only in the lab. Once the technology is optimized, it will be moved into industry and many different applications may come from it.
https://www.science.org/content/article/black-widows-spin-super-silk
The silk of the humble spider has some pretty impressive properties. It’s one of the sturdiest materials found in nature, stronger than steel and tougher than Kevlar. It can be stretched several times its length before it breaks. For these reasons, replicating spider silk in the lab has been a bit of an obsession among materials scientists for decades.
Now, researchers at the University of Cambridge have created a new material that mimics spider silk’s strength, stretchiness and energy-absorbing capacity. This material offers the possibility of improving on products from bike helmets to parachutes to bulletproof jackets to airplane wings. Perhaps its most impressive property? It’s 98 percent water.
“Spiders are interesting models because they are able to produce these superb silk fibers at room temperature using water as a solvent,” says Darshil Shah, an engineer at Cambridge’s Centre for Natural Material Innovation. “This process spiders have evolved over hundreds of millions of years, but we have been unable to copy so far.”
The lab-made fibers are created from a material called a hydrogel, which is 98 percent water and 2 percent silica and cellulose, the latter two held together by cucurbiturils, molecules that serve as “handcuffs.” The silica and cellulose fibers can be pulled from the hydrogel. After 30 seconds or so, the water evaporates, leaving behind only the strong, stretchy thread.
The fibers are extremely strong – though not quite as strong as the strongest spider silks – and, significantly, they can be made at room temperature without chemical solvents. This means that if they can be produced at scale, they have an advantage over other synthetic fibers such as nylon, which require extremely high temperatures for spinning, making textile production one of the world’s dirtiest industries. The artificial spider silk is also completely biodegradable. And since it’s made from common, easily accessible materials – mainly water, silica and cellulose – it has the potential to be affordable.
Shah and his team are far from the only scientists to work on creating artificial spider silk. Unlike silkworms, which can be farmed for their silk, spiders are cannibals who wouldn’t tolerate the close quarters necessary for farming, so turning to the lab is the only way to get significant quantities of the material. Every few years brings headlines about new inroads in the process. A German team has modified E-coli bacteria to produce spider silk molecules. Scientists at Utah State University bred genetically modified “spider goats” to produce silk proteins in their milk. The US army is testing “dragon silk” produced via modified silkworms for use in bulletproof vests. Earlier this year, researchers at the Karolinska Institute in Sweden published a paper on a new method for using bacteria to produce spider silk proteins in a potentially sustainable, scalable way. And this spring, California-based startup Bolt Threads debuted bioengineered spider silk neckties at the SXSW festival. Their product is made through a yeast fermentation process that produces silk proteins, which then go through an extrusion process to become fibers. It’s promising enough to have generated a partnership with outdoor manufacturer Patagonia.
But, as a 2015 Wired story points out, “so far, every group that’s attempted to produce enough of the stuff to bring it to the mass market, from researchers to giant corporations, has pretty much failed.”
I mean, I’m listing it because I believe that it’s something that has some value that could be done with the information. But it’s a “are the benefits worth the costs” thing? let’s say that you need to pay $800 and wear a specific set of glasses everywhere. Gotta maintain a charge on them. And while they’re maybe discrete compared to a smartphone, I assume that people in a role where they’re prominent (diplomacy, business deal-cutting, etc) probably know what they look like and do, so I imagine that any relationship-building that might come from showing that you can remember someone’s name and personal details (“how are Margaret and the kids?”) would likely be somewhat undermined if they know that you’re walking around with the equivalent of your Rolodex in front of your eyeballs. Plus, some people might not like others running around with recording gear (especially in some of the roles listed).
I’m sure that there are a nonzero number of people who would wear them, but I’m hesitant to believe that as they exist today, they’d be a major success.
I think that some of the people who are building some of these things grew up with Snow Crash and it was an influence on them. Google went out and made Google Earth; Snow Crash had a piece of software called Earth that did more-or-less the same thing (albeit with more layers and data sources than Google Earth does today). Snow Crash had the Metaverse with VR goggles and such; Zuckerberg very badly wanted to make it real, and made a VR world and VR hardware and called it the Metaverse. Snow Crash predicts people wearing augmented reality gear, but also talks about some of the social issues inherent with doing so; it didn’t expect everyone to start running around with them:
I think that Stephenson probably did a reasonable job there of highlighting some of the likely social issues that come with having wearable computers with always-active sensors running.